NASA Technical Memorandum 100833 ’

Electromagnetic Propagation in PEC
and Absorbing Curved S-Ducts

Kenneth J. Baumeister
Lewis Research Center ;
Cleveland, Ohio

{NASA-TH-100833) ELECTROMAGNETIC N88-19698
PROPAGATION IN PEC AND ABSORBING CORVED
5-DUCTS (NASA) 27 p CsCL 20n

Unclas

G3/32 0133302

Prepared for the
1988 IEEE AP-S International Symposium and URSI Radio Science Meeting
Syracuse, New York, June 6-10, 1988

NASA



E-3507

ELECTROMAGNETIC PROPAGATION IN PEC AND ABSORBING CURVED S-DUCTS

Kenneth J. Baumeister

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A finite-element Galerkin formulation has been developed to study trans-
verse magnetic (TM) wave propagation in two-dimensional S-curved ducts with
both perfectly conducting and absorbing walls. The reflection and transmission
at the entrances and the exits of the curved ducts are determined by coupling
the finite-element solutions in the curved ducts to the eigenfunctions of an
infinite, uniform, perfectly conducting duct. Example solutions are presented
for a double mitred and S-ducts of various lengths. The length of the S-duct
is found to significantly effect the reflective characteristics of the duct.
Also, the effect of curvature on an absorbing duct wall is illustrated.

INTRODUCTION

Electromagnetic propagation in curved ducts (wave guides) plays an impor-
tant role in many practical physical systems. In microwave power generation
systems for example (ref. 1, pp. 315-317), bends or corners are required to
alter the direction of the wave. Since curves or corners represent discontinu-
ities, reflection from the bends can be significant. To better understand the
electromagnetic transmission properties of a bend, a finite-element Galerkin
formulation has been developed to study wave propagation in curved S-shaped
ducts. Both perfectly conducting and absorbing walls will be considered.

NOMENCLATURE
A; mode amplitude of positive going entrance waves, equation (15)
A; mode gmp1itude of reflected negative going entrance waves,
equation (15)
B; mode amplitude of positive going exit waves, equation (18)
b' characteristic duct height
b, dimensionless entrance height bé/b'
bb dimensionless exit height bé/b'
cé speed of light in vacuum
E dimensionless harmonic electric field vector, 59 EI(XIﬁy"ZI)

ey.ey,ez unit vectors in coordinate directions

f dimensionless frequency, equation (7)



dimensionless harmonic magnetic intensity vector, H'(x,y,z)/Hé

x component of magnetic intensity H
magnetic intensity at node i
normalizing magnitude of magnetic intensity
finite-element approximation to HX
F
wave number, w/cC
axial modal wave number, equations (16) and (17)
dimensiontess length, L'/b'
number of elements
mode number, equation (20)
number of nodes
number of modes
local interpolation shape functions
mode number, equation (15)
outward normal unit vector
length of line segment on boundary
.
dimensionless time, 58 t
weight, equation (25)
dimensionless transverse distance, x'/b'
dimensionless transverse distance, y'/b’
dimensionless axial distance, z'/b'
dielectric constant, s'/eé
dielectric constant in entrance duct, eé/cé
permittivity
permittivity in vacuum

complex permittivity, equation (5)



M relative permeability, p'/pé

n' dimensional permeability

pé permeability in vacuum

o dimensionless conductance, o'b'/césé
w' angular velocity

w dimensionless angular velocity, w'b'/cé
Subscripts

a entrance region

b exit region

X,¥,2 scalar vector components
Superscripts

(n region 1

(2) region 2

' dimensional quantity
T transpose

- vector quantity

GEOMETRICAL MODEL
In the finite-element modeling of the curved ducts to be presented, an
S-shaped profile has been closed to approximate the two-dimensional cross-

sectional profile that might be found in a typical bend, as shown in figure 1.
The S-shaped profile can be prescribed by a simple third-degree polynomial of

the form
2 3
y = 3(%) - 2(%) (M

where the dimensionless duct coordinates are defined as

y=L z- L= = (2)

- _Z
ba ba
and bé is the height of the straight entrance duct teading into the curved

duct. The S-curve defined by equation (1) has zero slope at z/L of 0 and 1;




providing a smooth transition from a straight entrance to the curved test sec-
tion. In the foregoing equations, the prime, ', is used to denote a dimensional
quantity and the unprimed defines a dimensionless quantity. This convention
will be used throughout this paper. These and all other symbols used in the
report are defined in the nomenclature.

This paper will focus on the interaction of a propagating duct mode travel-
ing down the uniform entrance duct with the curved wall as shown in figure 2.
The reflection and transmission at the entrance and exit of the curved duct are
determined by coupling the finite-element solutions in the curved duct to the
eigenfunctions of the infinite, uniform, perfectly conducting entrance and exit
ducts. This permits a multimodal representation accounting for reflection and
mode conversion by the nonuniformity (ref. 2).

GOVERNING EQUATIONS
The governing differential equations are the standard Maxwell's equations
along with the boundary conditions associated with perfectly conducting and
lossy walls. Maxwell's equations will be combined to form a single wave equa-
tion for transverse magnetic wave propagation in a two-dimensional duct.

Maxwell's Equations

Maxwell's curl] equations for time harmonic (e*Jot) variations in the elec-
tromagnetic fields are

UXE = -jourH (3)

UxH = jweE (4)

where the total permittivity included conduction

e =€, - jo/w (5
o'b!

g = CIC? (6)
0 0

flbl wlbl
£ o ET—E w = C.a w=2rf (7
0 0

Heterogeneous Variable Property Wave Equation

The number of dependent variables can be reduced by combining Maxwell's
equations (3) and (4) into a single wave equation. It is desirable to develop
a wave equation that could be used for varying media properties so that no
special treatment of the interface between materials is required. That is,
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the same equations apply in the duct and in the absorber region and only the
material properties are changed.

Rewriting equation (4),

UH _F (8)
jwe
and taking the curl
Vx[zlﬂ J = WxE (9
Jwe

The constants jw are independent of space and can be pulled out the curl
operator in equation (9); however, ¢ must remain inside since e 1is now
assumed a function of the spatial dimensions.

!—-Vx[m} - UXE (10)
Jw €

Substituting equation (10) into equation (3) yields our heterogeneous
governing wave equation.

vx [Yﬁﬂ } - wzprﬁ an

TM Variable Property Two-Dimensional Wave Equation

Transverse magnetic (TM) waves will now be assumed to represent the input
electromagnetic modes propagating down the entrance duct towards the curved
S-duct. For this two-dimensional geometry, the assumption is made that only
one component of the H vector will exist in the problem domain, that is,

H(y,2) = H (y,2e, (12)

where ey, 1is a unit vector in the x direction (into the paper as_shown in
fig. 2). The magnitude of the single x component of the vector H depends
only on the two spatial dimensions y and z. Equation (12) is a valid
solution in both the straight and curved duct since it identically satisfies
Maxwell's divergence equations for magnetic fields.

Substituting equation (12) into equation (11) and performing the required
manipulation yields

aH aH
3 (L _x}, 3 (L _x 2 -
3y (E; 3y ) * 33 (CT 37 ) + W erX =0 (13



In vector form,

1 2
Ve EVHX+werX=O 14)

Equation (14) represents the governing wave equation to be solved by
finite-element theory.

UNIFORM DUCT ANALYTICAL SOLUTIONS

The analytical solutions of equation (14) for wave propagation in the
uniform perfectly conducting duct having an anechoic entrance and exit will be
employed to give the termination boundary condition for the finite-element
region. The analytical solution of equation (14) for TM waves traveling
between perfectly conducting parallel plates is given as (ref. 3, p. 458):

Nm m
+ (n - D (n - D +jk_ 2z
HXa = } An cos (——7;————y) E ( b y) e v zn (15
a a
n=1 n=1
jot : + -jk_ z
For the e time dependence used here, the Ane zn term represents a
wave propagating in the positive 2z direction while the szn term

represents a wave moving in the negative 2z direction.

The axial wave number kz, in equation (15) is

2
(n - N (n - N
kzn=+k\ﬂ—(—b_k—_) (b—k)i‘ e
a a
S Y/ CTSRL YA N FC R DT W (17
zn = 7Y bak - bak

A similar solution exists at the exit, except only positive going waves
are considered.

No

Hop = E B; cos (ﬁﬂ—%—llﬂ-y) e_sznZ (18)
b

n=1

BOUNDARY CONDITIONS

A variety of boundary conditions will be used in the finite-element solu-
tion of equation (14) for the model probiem which is displayed in schematic



form in figure 2. Each of the required conditions will now be briefly
discussed.

Input Condition

The analysis assumes a given number Nm of propagating A; modes

(eq. 15). These modes effectively set the level of the magnetic field in the
finite-element region and can be viewed as the equivalent Dirichlet boundary
conditions required for elliptic boundary value problem as defined by
equation (14).

The modal expression represented by equation (15) has been truncated to a
total of Nm modes of the infinite number possible. Thus, a total of Nm

unknown modal amplitudes A;, AE, .. A& have been introduced. Nm con-

m
straint equations will be required to determine each of these unknown reflec-
tion coefficients. The equations used to define these coefficients will now be
introduced.

Continuity at Inlet and Exit

The tangential component of an H field is continuous across an interface
between two physically real media which are not perfect conductors (ref. 4,
eq. (1.61)). Thus, the boundary condition becomes

Hxa = HX (2 =0; 0<¢<y« ba) (19)

where Hxa is the modal representation of magnetic field in the analytical
inlet region given by equation (15) and ﬁx represent the finite-element
approximation for HX at the interface. The hat over ﬁx implies an approxi-

mate finite element numerical solution to be discussed in detail in a following
section.

At the inlet to the curved section, shown in figure 2, the Hyy in the
analytical region given by equation (15) must match the magnetic field defined
by the finite-element nodal points along the boundary interface. Many possible
matching methods can by employed for this boundary condition, such as point
collocation, least squares, or weighted residuals. A weighted residual approach
was used herein with the weighting function equal to the eigenfunctions for the
uniform infinitely long duct with perfectly conducting walls;

b

d

J K, - fity] cos (S’“—B—M-Y) dy =0 atz=0 (20)
a

)

(Nm equations, m = 1,2,3, Nm)



Equation (20) represents Ny separate equations; one for each coefficient
defined in equation (15). The symbol m has been introduced as a dummy vari-
able to make it distinct from the multiple n mode numbers that make up the
Hy analytical function. A similar equation exists at the exit.

In addition to the tangential component of the magnetic field, the tangen-
tial component of the electric field must also be continuous across the inter-
face (ref. 3, eq. (7-52(a))). Using equation (4) to express the tangential
electric field in terms of the magnetic field (ref. 5, eq. (7-4)) yields

- . — . 1< 21)

The weak form of the finite-element solution will be employed in the solu-
tion of this problem. In this form, a contour integral term will be developed
which will contain a natural boundary condition of the form VH e n where n
represents the unit outward normal. Equation (21) can be expressed in this
gradient form at the entrance as

oH
VH, e = i*’— 7;3 (inlet) (22)
a
and at the exits
- _ +€ Bbe
VHX en = — 37 (exit) 23
b

The sign change in equations (22) and (23) comes directly from the directional
change of the unit outward normal n.

Perfectly Conducting Wall Conditions

At a perfectly conducting wall, the tangential component of the electric
field vector is zero (ref. 3, eq. (7-52(a)) or ref. 4, eq. (1.69)). Again,
using equation (4) to relate the electric field to the magnetic field (ref. 5,
eq. (7-4)), the component of the gradient of the magnetic field normal to a
perfectly conducting wall becomes

9H en=0 (28)

FINITE-ELEMENT THEORY

The finite-element formulation of the electromagnetic wave equation is now
generated by using the method of weighted residuals to obtain an integral form
of the variable property wave equation over the whole (global) domain D shown
in figure 3.



System Discretization

The continuous domain D is first divided into a number of discrete areas
staked out by the nodal points as shown in figure 2.

Global Weighted Residual Approach

In the_classical weighted residual manner, the magnetic field intensity
component H _(y,z) is curve fitted by expanding in terms of all the unknown
nodal values Hxi(yi’zi) and a known series of basis (weight) functions, such
that

N
Hx(y,z) = } wi(y’Z)Hxi = [N]{Hx} (25)
i-1

where the basis or weight functions wi(y,z) characterizes the spatial depend-

ence of ﬁx(y,z) in terms of Hxi which represents the unknown value of the

magnetic field intensity component at the ith nodal point in the global

region. As before in equation (19), the hat over the Hx(y,z) indicates that

it is the approximate numerical solution to Hy(y,z). The precise form of the
known weight which will be employed in this analysis will be presented later
in the section entitled Galerkin Approximation.

Upon substituting the assumed magnetic field series, equation (25), into
the governing wave equation at each nodal point, a distribution of errors
results throughout the finite-element region due to the approximate nature of
the assumed series. In accordance with the method of weighted residuals, the
integral of the assumed basis function Wj; and the error at each nodal point
are forced to be zero (orthogonal) by letting

| - 2 =
JJ Wi (V.EVHX+werX) dydz = 0 (26)
D

(i =1,2, . . . N equations)

Thus, there are N separate equations (written in compact form); one equation
for each of the N nodal Hy; unknowns.

By making use of the gradient vector identity of a scalar and a vector
and Green's theorem in a plane (ref. 7, p. 79, eq. (4.7(b))) equation (26) can
be converted to

1 ~ 2 1 o . =
SN, e AL - W erJ dydz - (wi S VA, . n) ds = 0 (27)

(i =1,2, . . . N equations)



In effect, the second order differential equation has been reduced to a
first order equation allowing the use of the weak formulation of the finite-
element theory.

Finite Element Approximation

Equation (27) is valid over the entire domain D shown in figure 3 or any
subdomain Ag, as represented by the area of a small triangular element embed-
ded in the region as depicted in figure 3. To begin the finite-element aspect
of the weighted residual method, the domain D is assumed to be divided into
M elements defined by N nodes, see figure 2. In this case, equation (27)
can be written as

M
o(e) 2 ( ) 1 e | -
} J{ (—— VN . VHXe - “1“ Mo Xe ) dydz - % (Ni ;; VHX o n) ds =0
S

G =1,2 . . . N equations) (28)

Where the properties are now given a subscript e to indicate that they may
vary from element to element. Although the area integration in equation (28)
applies to an individual element, the line integral is still defined over the
global surface area, and as such, can be treated independently from the local

~(e)

area integrations. Also, ﬁx has been replaced by H which expresses the

magnetic field in terms of the three local element nodes associated with each
triangular element as shown in figure 3.

Galerkin Approximation

In the method of weighted residuals, the weight Wj; s assumed to be a
known function which has the property of being unity at node i and identical
to zero at all other nodes. The Galerkin approximation to the more general
weighted residual approach assumes that Wj; can be related to local shape

(e)

function 'Ni (x,y) which represents the variation of the field variable HX

and its derivatives inside the element.

The form of the local shape matrix [N1Ce) depends on the type of element
used. For the linear triangular element employed herein, the known value of

N(e) can be found in texts on finite elements (ref. 9, p. 6). Thus, the mag-
netic field Hx(y,z) inside a particular element can be expressed in terms of

the local shape function N.(y,z) as follows:

(e) (e)

x1

(e) (e)

x3

~(e)

H (e) N(e)

+ N w2 * N3

Hx(y,z)

IR

(y,2) = N (y,2)H (y,2)H (y,2)H

} OO L)
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where {HX}(9> is the vector of nodal values of Hy for a general element e
with subscripts 1, 2, and 3 representing the nodal positions as shown in fig-
ure 3. The subscripts 1, 2, and 3 take on the actual nodal number of fiqure 2
when applied to a specific element in the finite-element region.

The weight wi(y,z) is now approximated by multiple values of Nge).

(e)

Ni(y,z) = Ni (y,2) (30

in all elements containing the ith node. For all elements which do not con-
tain the node i, the weight MW; is assumed zero not only at all other nodes
(as required by the general definition of W;) but also at all values of y
and z in the elements which do not contain the node 1i. Thus, Wy can be
visualized as a multisided pyramid on a flat surface with its apex over node i
and corners at adjacent nodes.

(e)
Recognizing that Ni is zero for all elements not having the unknown

Hxi associated with a particular element, the finite element equation (28) can

now be written in compact form as

M
1 (e) ~(e) (e) 2 ~(e)
} JJ. (E— VNi . VHX - Ni w preHx ) dydz
Ae ¢
e=1

i, { (Nge) i vﬁ)‘(e’ . ﬁ) ds = 0 %10
S “e

(i =1,2, . . . N equations)

Global Matrix

The finite-element aspects of converting equation (31), the entrance con-
dition (20), and the similar exit condition into a set of global difference
equations can be found in text books as well as reference 10 and for concise-
ness will not be presented herein. However, equation (70) of reference 10 is
identical to equation (31). In reference 10, additional details can be found
for the manipulation of equation (31) into the final finite-element solution.

RESULTS AND COMPARISONS

For theory and code validation, the finite-element solution is first
applied to a straight walled case where a simple exact solution exists. Next,
the solution is applied to a mitred duct approximation to an S-duct for which
certain results can be expected from previous numerical solutions. As a third
example, the finite-element solutions will be presented for a set of S-ducts of
various lengths with perfectly conducting boundary conditions. Finally, the
solution for a curved duct with an absorbing wall will be presented. With the
exception of the first example, all ducts are air filled (e = ep =1, pr = 1.
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Example 1: Reflection and Transmission with Normal Incidence

Consider the case of an incident plane magnetic wave Hy of dimensionless
frequency 2w encountering a step change in the dielectric constant from 1 to
4 at the dimensionless axial position of z equal to 0.25 inside the finite-
element grid. As shown in figure 4, the finite element and exact analytical
(ref. 5, chapter 5) theories are in good agreement for the absolute magnitude
of the magnetic intensity Hy. Additional validation examples for propagation
with straight walls can be found in reference 10.

Example 2: Double Mitre Approximation to S-Duct

As shown in figure 5, a double 90° mitred duct can be represented as a
rough approximation to an S-duct. Plane wave acoustic propagation in a single
90° mitred duct is well understood from the numerical studies of Shepherd and
Cabelli (ref. 11). The energy reflection coefficient of a single 90° mitred
bend for plane wave incidence is shown in figure 6 from reference 11. As the
frequency of the incoming plane acoustic wave approaches the first mode cut-on
frequency, the transmitted mode shape in the exit portion of the mitred duct
approaches the shape of the first higher order mode. Consequently, as shown
in figure 6, nearly all the incoming energy is reflected back down the duct,
since the transmitted wave is cut-off and cannot carry energy. For very low
frequency nearly all its energy is transmitted down the duct while at higher
frequencies complete reflection of energy is expected, as depicted by the ray
approximation shown in figure 6.

As seen in figures 5 and 7, combining two 90° mitred ducts produces a
rough approximation for an S-duct. As shown in figure 7, the rear and forward
faces have been fitted with a steep S-curve. The modified double mitred duct
has roughly the same characteristic as the single mitred duct, as seen in fig-
ure 7. The energy reflection coefficient approaches unity near the first cut-
off (but slightly less), at Tow frequencies the wave is passed unattenuated,
and at higher frequencies the reflection coefficient is near unity. In addi-
tion, a low frequency hump appears at a frequency of w near 1.5. Perhaps
the duct is now acting analogously to an acoustic expansion chamber at low
frequency which has similar types of humps due to resonance effects (ref. 12,
p. 8).

Example 3: S-Duct

In the third example, the energy reflection coefficient was determined
for the S-duct shown in figure 8 for various lengths. Generally, as the
length increases the reflected energy decreases. In contrast to the mitred
duct, the reflected energy approaches a minimum at the first node cut-on
frequency of 3.14. Again, at the lower frequencies, the energy is nearly all
transferred down the duct. The energy flux was determined by calculating the
Poynting vector in the inlet and outlet duct from the calculated modal
coefficients.



Example 4: HWall Absorbers

Figure 9 shows duct configurations with an absorbing region along the
upper and lower walls of the duct. Figure 9(a) show the straight wall config-
uration while figure 9(b) shows the curved wall configuration. For the same
absorbing material, the attenuation of both ducts will be compared. The wall
material will have a relative permeability of 4.1 and a complex permittivity of
1-j2.83. An incident plane wave of dimensionless frequency w of 27 is
assumed. Figure 10 displays the finite-element grid used for both
configurations.

For the straight duct, the axial component of the energy level (Poynting
vector) is shown in figure 11. The drop in level is due to grazing absorption
by the walls. Figure 12 displays contour plots of the magnitude of the mag-
netic field for the straight duct absorber configuration. The solid tine draw-
ing shows the complete contours, while the symbols are plotted at selective
points in the companion figure so that the actual magnitude of the contour can
be readily determined. For convenience the magnitude of the magnetic field has
been renormatized between 0 and 1 according to the formula

‘Hx‘ B ‘meinl

xmaxl - ,mein[

(32)

H

I Xcontour |H
where Hymax 1S the maximum value of magnitude of the magnetic field in the
plotting domain and Hypin 15 the minimum value of Hy in the plotting
domain.

As seen in figure 12, the magnetic field has decreased to near zero at
the walls but remains relatively high in the center of the duct. 1In effect,
electromagnetic energy beams through the center of the duct. This should not
occur in the curved duct, because a more normal type impingement absorption
will take place.

For the curved duct, the axial component of the energy level is shown in
figure 13. For the straight duct, the decrease in duct exit power due to wall
absorption was -3.73 dB, while for the curved duct the decrease in exit energy
due to wall absorption and reflection was -18.5 dB. The reflected energy at
the inlet due to the change in duct curvature and wall impedance was -13.4 dB.
The drop in energy level at the exit of the curved duct is considerably larger
than the straight duct due to the more normal incidence of the magnetic field
on the absorbing walls. Figure 14 displays the magnetic field contours. In
this case, the curved wall prevents the beaming down the center which occurs in
a straight duct. Consequently, the magnetic field quickly damps to near zero.

CONCLUDING REMARKS

A finite-element Galerkin formulation was developed to study transverse
magnetic (TM) wave propagation in two-dimensional curved S-shaped ducts with
both perfectly conducting and absorbing walls. The derivations from Maxwell's
equations assumed that the material properties could vary with position result-
ing in a nonhomogeneous variable property two-dimensional wave equation. This
eliminated the necessity of finding the boundary conditions between the dif-
ferent materials. Consequently, a complex structure can be easily modeled

13



simply by changing the property of elements in the finite-element domain. The

reflection and transmission at the entrance and the exit of the curved duct are
determined exactly by coupling the finite-element solutions in the curved duct

to the eigenfunctions of an infinite, uniform, perfectly conducting duct.

The numerical formulation is relatively simple to use and appears to give
very accurate results. Example solutions are presented for a doubled mitred
and S-duct of various lengths and with perfectly conducting and absorbing duct
walls. The length of the S-duct is found to significantly affect the reflec-
tive characteristics of the duct. Also, wall curvature is shown to greatly
enhance the absorption properties of a duct.
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FIGURE 1. - S-DUCT GEOMETRY AND COORDINATE SYSTEM.
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FIGURE 5. - DOUBLE MITRE APPROXIMATION TO S-DUCT.
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ENERGY REFLECTION COEFFICIENT

FIGURE 8. - ENERGY REFLECTION COEFFICIENT OF S-DUCT FOR
PLANE WAVE INCIDENCE AS A FUNCTION OF FREQUENCY,
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(A) STRAIGHT DUCT.

(B) CURVED DUCT.
FIGURE 9. - ABSORBING WALL DUCT CONFIGURATIONS.
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(A) STRAIGHT DUCT.

(B) CURVED DUCT.

FIGURE 10. - DISCRETIZATION OF AIR FILLED WAVE GUIDE WITH
ABSORBERS MOUNTED ALONG BOTH UPPER AND LOWER WALLS.
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FIGURE 11. - EFFECT OF UPPER AND LOWER WALL ABSORBERS

ON THE MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNT-
ING VECTOR) FOR A FIVE-MODE MODAL EXPANSION IN THE
ENTRANCE AND EXIT DUCTS.

RELATIVE
MAGNITUDE

FIGURE 12. - CONTOUR PLOTS OF MAGNETIC FIELD AMPLITUDE.

23



24

DIMENSIONLESS POYNTING AXIAL VECTOR
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FIGURE 13. - EFFECT OF UPPER AND LOWER WALL ABSORBERS ON
THE MAGNITUDE OF THE AXIAL FLUX OF ENERGY (POYNTING
VECTOR) FOR A FIVE-MODE MODAL EXPANSION IN THE ENTRANCE
AND EXIT DUCTS.
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FIGURE 14. - CONTOUR PLOTS OF MAGNETIC FIELD AMPLITUDE.
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